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Pattern formation in recirculating flows of
suspensions of orientable particles

By ANDREW J. SZERT

Department of Mechanical and Aerospace Engineering, University of California,
Irvine, California 92717, U.S.A.
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The global, dynamical behaviour of suspensions of small, orientable, non-interacting
particles is investigated. Owing to spatial inhomogeneity of the flow field, certain
orientations of particles may be favoured in different regions of the flow. Favoured
orientations may be deduced from an analysis of the history of flows experienced by
a particle along its path. In flows that are time-periodic in the lagrangian frame of the
suspended phase (e.g. steady, recirculating flows in the eulerian frame), the
orientation dynamics may be characterized by periodic or quasi-periodic attractors.
After the decay of initial transients, such attractors lead to the formation of patterns
of orientation of the suspended particles that are temporally fixed but spatially
varying in the eulerian frame of reference. In effect, these patterns constitute a new
type of global ordering of the suspension that arises not from interaction effects
among the particles, but rather from the smoothly varying influences of the flow.
Examples of these flow-induced patterns are explored in two- and three-dimensional
flows that may be produced in the laboratory. The arguments presented are purely
kinematical; as such the conclusions regarding pattern formation pertain to steady,
recirculating flows whether or not the particles have an effect on the flow field. As the
phenomena described herein have not been previously reported as experimental
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478 A. J. Szeri

observations, this work constitutes a theoretical prediction of a new physical
phenomenon.

1. Introduction

We consider patterns that arise in the orientation of particles in recirculating flows
of suspensions. The particles in question are assumed to be small with respect to
length-scales over which the flow varies; thus their orientation evolves in response to
the instantaneous local flow field. We neglect brownian effects that may be
important for suspensions of extremely small particles. In addition, the particles are
supposed to be neutrally buoyant, and to follow the same paths through the flow as
fluid particles. Finally, the particles are assumed to be non-interacting; hence the
suspensions we consider are dilute.

The patterns that arise are a consequence of dynamical attractors that characterize
the evolution of particle orientations with time; these attractors are global in
orientation space and along a given recirculating particle path in the flow. The nature
of the attractors may be deduced by a geometrical analysis of the orientation
evolution equations that properly accounts for the history of local flows seen by a
particle on its journey through the flow field.

The patterns are spatially varying orientations or planes of orientations (steady in
the eulerian frame) to which all particles are eventually attracted; hence there is a
definite, preferred microscopic arrangement of the suspended phase. However, we
emphasize that the materials we consider remain liquid. If the suspension were to
cease to flow as a liquid, then the patterns would be lost to whatever brownian
motion may be present, no matter how small. It is the flowing of the material which
itself creates and maintains the patterns.

The initial work on the orientation dynamics of suspended particles concentrated
on single particles in steady, homogeneous flow fields. Jeffery (1922) considered
ellipsoidal particles in steady, uniform shear flow; Bretherton (1962) studied
particles of a more general shape in three-dimensional steady, uniform shear flow.
Particles either rotate indefinitely or align in a preferred direction in these simple
flow fields. As one might expect, the dynamics of particles are much richer when one
considers their response to local flow fields that are time-dependent.

Recent work in this area by Szeri et al. (1991) focused on the range of possible
dynamical behaviour of orientable particles in two-dimensional flows that are
unsteady in the lagrangian frame. Whilst the flows they consider are restricted to two
dimensions, however, the particles are free to move out of the plane of the flow. The
governing equations for the path and orientation of rigid, neutrally buoyant particles
are well-known:

d
&x(t) = u(x(t)), (1.1)

d

&R =k'R—k: RRR, K= Q(x(t))+GE(x(t)). (1.2)
The orientation of the particles is given by the vector R(f; R,). The axial vector R
rotates in response to the local flow field experienced by the particle, through the
dependence of (1.2) on the rate-of-strain tensor E, and on the vorticity tensor £2. The
inefficiency of rotation of particles with finite aspect ratio in straining flows is
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accounted for by the shape factor ¢, which normally lies between 0 and 1. Owing to
the periodic nature of the particle paths in a recirculating flow, note that the
equivalent velocity gradient tensor x has periodic dependence on time in that case.
It is this source of unsteadiness in the basic equations for particle orientation
dynamics that is responsible for the phenomena we shall describe. In the steady,
recirculating flows of interest to the present work, particle orientation dynamics is
shown by Szeri et al. (1991) to be either asymptotically periodic or quasi-periodic. In
the first case there is a periodic attractor in the plane of the flow to which all initial
orientations are eventually attracted. In the second case, there is no attractor
present, and particles simply tumble in an irregular fashion in three dimensions along
their respective recirculating paths through the flow field.

These assertions concerning particle orientation dynamics in two-dimensional flow
fields were tested in a series of physical experiments reported in Szeri et al. (1992), in
which observations were made of the orientation dynamics of a rigid particle
suspended in a carefully controlled flow in a four-roll mill. In these experiments, a
single rigid particle was maintained at a fixed point in the test section of the flow
device and subjected to a well-characterized, time-periodic local flow. The experiment
as described was intended to simulate the flow-induced dynamics of a particle that
experiences a time-periodic variation in the local flow as it circumnavigates a
recirculating path through a spatially inhomogeneous flow that is steady in the
eulerian frame of reference. Quasi-periodic dynamics and dynamics associated with
the presence of a periodic attractor were observed for different periodic protocols of
the local flow field, in accord with theoretical predictions.

More recently, the analytical tools for the study of particle orientation dynamics
were extended to the case of particles suspended in three-dimensional flows in Szeri
& Leal (1993). There, it is shown that the only generic types of dynamical behaviour
of particles suspended in recirculating, three-dimensional flow fields are dynamics
associated with a periodic attractor, or with a quasi-periodic attractor. These results
seem, at first glance, to be at odds with the results for particle orientation dynamics
in two-dimensional flow fields, in which there is no attractor associated with the
quasi-periodic dynamics. The resolution of this paradox is rather subtle. Upon close
examination, it is clear that the structurally unstable quasi-periodic orientation
dynamics that may arise in a two-dimensional flow perturbs to dynamics associated
with a structurally stable quasi-periodic attractor in a nearby, slightly three-
dimensional flow. For a thorough discussion of the relevant issues of structural
stability of dynamical systems, we refer the reader to Arnold (1988). Notwithstanding
these subtle differences of particle orientation dynamics in two- and three-
dimensional flows, the two generic possibilities for recirculating flows are as follows.
Either the orientation dynamics is asymptotically periodic, or the orientation
dynamics is asymptotically quasi-periodic.

The three papers just described have in common a local point of view, that is to
say that each is focused on the details of the particle orientation dynamics of a single
particle that follows a specific recirculating path through the flow. The task of this
work is to synthesize the information regarding particle orientation dynamics of
single particles into a coherent picture of what will happen in the entire flow field. To
construct this coherent picture of the flow field, it will be important to consider what
may be the relation between attractors for the particle orientation dynamics
associated with neighbouring particle paths. When we have established that the
variation in such attractors across particle paths must be smooth, it is clear that

Phil. Trans. R. Soc. Lond. A (1993)
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there must be regions of the flow domain in which smoothly varying patterns
characterize the distribution of particle orientations after the decay of initial
transients. However, owing to the various types of attractors for the particle
orientation dynamics (periodic and quasi-periodic), and as a consequence of the
topology of the phase space of the differential equation for orientation of particles,
some unexpected and subtle patterns arise in recirculating flows of suspensions. The
patterns we describe should be observable via optical techniques (see, for example,
Frattini & Fuller 1986) with suitable materials. A more direct way to observe the
patterns would be to solidify a flowing matrix in which the pattern is generated by
a Stokes flow; we discuss this possibility below.

We begin our analysis with steady, recirculating two-dimensional flows in §2, in
which case it proves to be convenient to work in terms of the stream function. After
some initial background discussion on particle orientation dynamics in such flows, we
find that a periodic attractor for the orientation dynamics, where it exists, must vary
smoothly across level sets of the stream function. This is reflected by the smoothly
varying patterned zones one observes in examples. In addition, there may be thin
bands of quasi-periodic particle dynamics that separate patterned zones charac-
terized by different particle orientation dynamics. The patterned zones separated
by such a thin band of quasi-periodic dynamics may differ in a fundamental way:
namely, the particles in the different patterned zones may differ in the number of
end-over-end flips that each particle undergoes around a circuit. These differences
between distinct patterned zones in the flow reflect topological restrictions on the
phase space of the differential equation for orientation dynamics. The patterned
zones, together with thin bands of quasi-periodic behaviour, are investigated in
detail for an example flow that occurs between eccentrie, co-rotating cylinders.

In §3, we alter the focus to three-dimensional flow fields. As our concern is with
particles that follow recirculating paths through the flow field, we first examine the
geometric nature of recirculating flows in three dimensions. This leads to some
consideration of the hamiltonian structure of the particle paths in these flows. With
some knowledge of the particle paths, it is then possible to investigate the variation
of attractors for the particle orientation dynamics across particle paths. In three
dimensional flows, where there may be quasi-periodic as well as periodic attractors,
we find that quasi-periodic attractors in the lagrangian frame correspond to fixed
attracting invariant planes in orientation space in the eulerian reference frame.
Hence, in recirculating flows in three dimensions, there are in fact two globally
ordered states of the flowing suspension. One state is characterized by a dominant
single orientation of particles at each point of space. The second state is
characterized by a dominant plane of orientations of particles at each point of space.
The two states of the flowing suspension may coexist side-by-side in a single flow
field. These phenomena are investigated in detail in an example flow within a viscous,
spherical drop suspended in a linear external flow field, after Stone et al. (1991).

Finally, in §4, we give our conclusions. In addition, we include some speculation
on the uses to which these phenomena may be put.

2. Pattern formation in steady, recirculating, two-dimensional flows

In this section, we first review what is known about the orientation dynamics of
particles in two-dimensional flow field. Next, as an initial step towards constructing
a coherent picture of particle orientation dynamics in regions of the flow, we study

Phil. Trans. R. Soc. Lond. A (1993)
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the orientation dynamics of particles that follow neighbouring particle paths. This
leads to the description of the structure of patterned zones in the flow field, that are
finally investigated in detail for an example flow.

(a) A brief discussion of particle orientation dynamics in two-dimensional flows

Now we turn our attention to the analysis of particle orientation dynamics in two-
dimensional flows. In a two-dimensional flow field, in which the flow occurs in the x—y
plane, and the vorticity vector is parallel to the z-axis, equation (1.1) takes the
special form:

da/dt = u(x(t), y(t)), (2.1a)

dy/dt = v(x(8), (1)), (2.1b)

where w and v are the components of the velocity field in the x and y directions
respectively. For the following discussion, we assume that the velocity field (u, v)
is known in terms of a steady stream function ¥ (x, y), with compact level sets.
We assume further that the particle paths (x(¢; ¥), y(t; ¥)) are recirculating; thus
a(t; ) = a(t+Ty; ¥), yt; ) = y(t+71),; ), where T}, is the period.

It is profitable to describe the space of orientations of the particles relative to
modified spherical polar coordinates (o, 6), defined as follows. The angle o is
measured from the positive z-axis in the x—y plane in the usual, positive sense. The
angle 0 is 3n-0, where O is the usual angle measured from the positive z-axis in
standard definitions of spherical polar coordinates. With these definitions, when a
particle lies in the plane of the flow, & = 0. Equation (1.2) may be written in these
coordinates in the form

do/dt = v —Gesin 20+ 3Gy cos 20, (2.20)
df/dt = —3G(e cos 20 + 3y sin 207) sin 26. (2.2b)

The flow parameters e, y and » are components of the rate-of-strain and vorticity
tensors evaluated at the current position of the particle:

e w 0 0 —iw O
E=|Yyy —e 0| 2=|30 0 ():|.
0O 0 O 0 0 0

The parameters ¢, v and » depend on time owing to the motion of the particle
through the spatially inhomogeneous velocity field. Thus, the differential equations
(2.2) experience time-periodic forcing.

In equations (2.2a, b) the role played by the shape factor ¢ may be understood as
follows. Spherical particles (¢ = 0) simply rotate with the local vorticity. Fibres of
infinite aspect ratio (G = 1) rotate and align exactly as a line element of the fluid.
Moderate aspect ratio particles respond anisotropically in a way that depends on ¢;
one observes that G multiplies the anisotropic contribution to the vector field
corresponding to the right-hand-side of equations (2.2a, b). Hence, attractors for the
orientation dynamics are more likely to occur if ¢ is closer to 1.

If we were to conduct an investigation into the vector form of the orientation
evolution equation (1.2) for particles in a steady, recirculating, two-dimensional flow
field, it would be convenient to proceed in the following manner. Rather than
considering individual time-traces of equation (1.2), it is more profitable when

Phil. Trans. R. Soc. Lond. A (1993)
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9

Figure 1. Form of the Poincaré map &, of the in-plane orientation angle of a particle on a
recirculating path in a two-dimensional flow. The points (A, A) and (B, B) are equivalent. The
Poincaré map must be one-to-one, onto, and differentiable with differentiable inverse (a
diffeomorphism). A transverse intersection of &, with the dashed line o, = o, corresponds to a
periodic integral curve. If the slope of Z, at the pomt of insection is less than one, the corresponding
periodic integral curve is an attractor

investigating a periodically forced system of equations to work in terms of the

Poincaré map, defined by 7
Z(Ry) = R(T,; Ry, ). (2.3)

In equation (2.3), R(t; R,, ) is the solution of equation (1.2) with initial condition
R, for a particle that follows the particle path on the level set of the stream function
. One application of the Poincaré map is equivalent to integrating equation (1.2)
forward over one period of the flow. Of course, the period of the flow, the precise
nature of the forcing of equation (1.2), and hence the Poincaré map all depend on the
level set of the stream function i on which the particle-path resides. The graph of
the Poincaré map, {R,, Z,(R,)}, is constructed from the solutions of (1.2) over one
period of the flow, over the range of possible initial orientations R,.

In the special case of two-dimensional flow fields that we now consider, it is
apparent upon examination of the system (2.2) that the orientation dynamics of
particles in the o and 6 coordinates is decoupled. It happens that the dynamics in 6
are determined by the dynamics in o, and that the dynamics in o are decoupled from
the dynamics in 6. Hence it is sufficient to consider the reduced Poincaré map

Klog) = o(Ty; 00, ) (2.4)

in the study of particle dynamics in two-dimensional flow fields.

Owing to the fact that the reduced Poincaré map is defined from the flow of the
differential equation (2.2a) evaluated over the period 7}, it must be one-to-one, onto
and differentiable with differentiable inverse (i.e. a diffeomorphism). Hence, for the
case where there is an attractor for the orientation dynamics, it must appear as
shown in figure 1; the interested reader may consult Szeri et al. (1991) for details of
this argument Figure 1 is drawn with both the domain and range modulo w, as 0 <
o < mis the range of the variable o (owing to fore-and-aft symmetry of the partlcle)

As shown in figure 1, an intersection of the Poincaré map with the line o, = o,
corresponds to a perlodlc solution of the underlying differential equation, owing to
the definition of (). When d%,/do, < 1 at a point of intersection oy = (o), the
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associated periodic solution is a 7}, periodic attractor. For particles for which there
is no intersection of % (g,) with o, = o, the dynamics are quasi-periodic. It is
possible that when there is no intersection of the Poincaré map with the line o, =
0y, there may be a periodic attractor of period 7}, k > 1. However, the result will not
be a steady pattern in the eulerian reference frame, and so we do not distinguish this
case from that of truly quasi-periodic motion.

When viewed in a fixed eulerian frame of reference, these considerations have the
following interpretation. A 7, periodic solution of the orientation evolution equation
superposed on a 7}, periodic solution to the particle path equations corresponds to a
steady orientation at all points along the particle path when viewed in a fixed eulerian
frame of reference. If the 7), periodic solution is an attractor, then other initial
orientations within the basin of attraction (in orientation space) will eventually
settle down to a steady orientation in the eulerian frame. We remark that Szeri ef al.
(1991) show that an attractor for the orientation dynamics in two-dimensional flow
is an integral curve of the orientation evolution equation that must lie in the plane
of the flow. A quasi-periodic solution of the orientation evolution equation
superposed on a 7}, periodic solution to the particle path equations corresponds to an
unsteady orientation at all points along the particle path when viewed in a fixed
eulerian frame of reference. Thus, as mentioned before, the particle tumbles in three
dimensions.

Now, two neighbouring particle paths, (x(¢; ¥), y(¢; ¥)) and (x(t; ¥ +3y), y(t;
¥+ 8y)) have differing initial conditions. The solutions to the system (2.1) and (2.2)
depend smoothly on the initial condition. Furthermore, solutions may be extended
backwards and forwards indefinitely in time, owing to the fact that the phase space
is a compact manifold (the compact level sets of the stream function). Thus the
Poincaré map must also vary smoothly with stream function, for those level sets on
which it is defined. Note that the Poincaré map is not defined, for example, on the
level set of the stream function which happens to be the stable manifold of a saddle
point in the flow field. The reason for this is that the associated particle path is not
periodic.

We have established that the Poincaré map must vary smoothly with y. Hence,
when there is a transverse intersection of (o) with o, = o, for a given recirculating
path-line ¥, then a neighbouring path-line ¢ +06y will also show a transverse
intersection of Z 5, (07 with o = o; see figure 2. Thus, attractors deform smoothly
from one nested stream-line to another. This leads to the existence of attractors for
the orientation dynamics of particles that extend over a region of the flow.

(b) Conditions that apply near an elliptic stagnation point
As a simple but useful illustration of these concepts, we consider the dynamics of
particles that follow the recirculating path-lines in the neighbourhood of an elliptic
stagnation point in the flow field. We fix cartesian coordinates (§, %) so the elliptic
point is at the origin, and the flow occurs in the £~ plane. The stream function in
the neighbourhood of the origin may be written

E ) = HEM [jf zﬁ] {j}+ |

The derivatives are evaluated at the origin. For simplicity, we write a =y .., b = ¢ ¢,
and ¢ = ., with b*>—ac < 0 for elliptic stream lines.

Phil. Trans. R. Soc. Lond. A (1993)
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%o

Figure 2. Change in &, for a small change in . Note that a transverse intersection of %(c,) with
the dashed line o, = o, is preserved for small changes in i, hence, attractors for the orientation
dynamics deform smoothly across particle paths.

For particles that follow the level sets of ¢ near the origin, the velocity gradient
evaluated along the particle path is steady to leading order. In other words, to
leading order, the velocity gradient tensor evaluated on particle paths near the origin
is simply the velocity gradient at the origin. Hence the particle dynamical equation
(2.2) is autonomous. Szeri ef al. (1991) show that particles in a flow that is locally
steady in the lagrangian frame will rotate if the discriminant D is negative; for this
flow, one may compute

D = 46202 —2(1 + G2) ac + (®— 1) (a® +b?).

D is negative for ¢/ < 1, owing to the inequality b*—ac < 0. The period of end-over-
end rotation (by m) appears in the Appendix of Szeri et al. (1992):

Thip = 21/ (= D).
The period of the particle path, in contrast, is

Tyuan = 21/ (ac—b2).

This latter result is easily established by integrating the particle-path equations near
the elliptic stagnation point. It is interesting to note that when G = 1, T, = 27T}, ,;
thus, particles of infinite aspect ratio perform exactly two end-over-end flips during
each circumnavigation of the elliptic point. Particles of finite aspect ratio (¢ < 1)
have incommensurate periods of rotation and circumnavigation, in general. Even
when the periods of rotation and circumnavigation happen to be commensurate,
however, there is no attractor for the orientation dynamics. This proves the assertion
that every elliptic stagnation point in a two-dimensional flow of a suspension will be
surrounded by a non-patterned (i.e. quasi-periodic) zone.

(¢) Structure of patterned zones

In this sub-section, we investigate the structure of patterned zones. The first
question to answer is, what might constitute the boundary of a patterned zone?
Clearly, it may happen that at some particular level set of the stream function y*,
the Poincaré map %,.(o,) has a degenerate intersection with the curve o, = 0, i.e. an
intersection at which d%),/do, = 1, as shown in figure 3.

Phil. Trans. R. Soc. Lond. A (1993)
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[

%
Figure 3. Z, at a critical set of i/, where a saddle-node bifurcation occurs. This map is actually
taken from the example in §2d, on the particle path anchored at (x, y) = (2.068, 0).

vr

Figure 4. Sketch of a region bounded by two critical level sets of i, within which there is a periodic
attractor for the orientation dynamics of particles associated with each particle path.

This is the point of saddle-node bifurcation of the Poincaré map, at which the
associated periodic integral curve is neither an attractor nor a repellor but rather a
degenerate, meta-stable object. On one side of ¢*, there will be a periodic attractor
and on the other side of ¥* the dynamics will be quasi-periodic. For this reason, the
level set y* is a boundary between a region of steady pattern (in an eulerian reference
frame) and one of no pattern. Another type of boundary is one where the level set i
contains a stagnation point. We shall refer to either possibility as a critical level set
of .

Now that we have established what constitutes the boundary of a patterned zone,
let us consider the nature of attractors for the orientation dynamics of particles
with particle paths that lie between two critical level sets, say, ¥F and ¥, as
shown in the sketch in figure 4.

One interesting fact that relates all the attractors in the patterned zone ¥f <
W < ¥ is that the particles on all the level sets of i flip the same number of times.
To see this, consider the number of end-over-end flips characterizing a given
attractor,

W) = Lok (T} o) =03 (05 o), (25)
In (2.5), o} is an attractor for the orientation of particles on a given level set 1. Note
that in equation (2.5), o* is to be computed in the extended coordinate system in
which o is not taken modulo 7. The number of end-over-end flips » is the (integer)

Phil. Trans. R. Soc. Lond. A (1993)
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number of net rotations of the particle by m as it moves around the particle path.
Now, consider two neighbouring, nested streamlines i and i+ 8¢ in the patterned
zone between the two critical level sets ¥§ and y/¥. The attractor must be a smoothly
changing object with ¢, hence

1
n(y+8y) = p [0 vy (Tyrsy) — Th454(0)]

= o3I}~ o30)+0(By1)) = ().

The last step in this calculation makes use of the fact that n(yy) must be an integer.
This simple argument may be continued by induction to all the particle paths in the
patterned zone ¢ <y < .

These arguments have the following logical extension: patterned zones that are
characterized by a different flip number must be separated by either a quasi-periodic
zone, or by a critical level set of . Topologically, this statement is easily
understood. The appropriate phase space in which the evolution equation for o
should be analysed is a torus, with coordinate o around one circular generator and
periodic time 7 around the other. A periodic attractor is a closed curve that lies on
the surface of the torus, and passes through the ‘hole” a net n() times in a period. An
attractor with # flips cannot smoothly transform into an attractor with m # n flips
as these two objects are of fundamentally different topological type. In topological
terms, the two attractors belong to different homotopy classes. We return to these
deliberations in more detail in §3d.

Finally, we remind the reader that when the flow is strictly two-dimensional, the
quasi-periodic dynamics are not associated with an attractor, strictly speaking.
However, as we discuss in §3, under a slight three-dimensional perturbation to the
flow field, the quasi-periodic dynamics in a strictly two-dimensional flow perturbs to
dynamics associated with a quasi-periodic attractor. Therefore, although it is not
quite accurate, we shall always write in terms of periodic and quasi-periodic
attractors, even in strictly two-dimensional flows.

(d) Example.: particles in the flow between eccentric rotating cylinders

Now we shall move on to consider a specific, realistic example flow of a suspension
to observe just how the global structures we have discussed may arise. The example
flow we analyse occurs between eccentric, co-rotating cylinders. It is a useful flow
that may contain such features as free hyperbolic stagnation points and multiple
recirculation zones, depending on the choices of various parameters. We refer the
reader to the work of Ballal & Rivlin (1977) for a thorough discussion of this flow.

Although the arguments we have presented regarding pattern formation in
recirculating flows are purely kinematical, and as such are independent of whether
or not the particles have an effect on the flow field, it is simpler in an example flow
if we assume that the particles have no effect on the flow field. We remark that this
is a reasonable approximation in the limit of infinite dilution of the suspension.
Moreover, we consider the Stokes flow between the cylinders under the assumption
that the Reynolds number based on the length scale of the flow is small. Note,
however, that our previous arguments regarding pattern formation do not require
that the flow Reynolds number be small, but only that the particle Reynolds number
be small.
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With these comments out of the way, we proceed with the example. The two
cylinders have radii 0.3 and 1, and are arranged with eccentricity 0.75. The inner
cylinder rotates anti-clockwise at a non-dimensional angular speed of 20; the outer
cylinder rotates with an angular speed of 1. This rather extreme choice of geometric
and rotation rate parameters leads to an interesting situation of free hyperbolic and
elliptic stagnation points in the (Stokes) flow, with four separate recirculation cells.
For the purposes of discussion, we refer to the recirculation cells as A, within the
outer cylinder; B, surrounding the inner cylinder; and C and D, to the right of the
inner cylinder, left to right. These four cells may be observed in figure 5, below, or
in fig. 14e of Ballal & Rivlin (1977).

Owing to the complexity of the velocity field, we must integrate the particle-path
equations (2.1) and the orientation evolution equation (2.2a) numerically, using
standard methods. For the shape factor, we take the fairly typical value G = 0.9,
which corresponds to a fiber-like particle of finite aspect ratio. The Poincaré map
associated with each particle path is constructed by integration of (2.2a) over the
range of initial orientations and over the period of the associated particle path. Upon
examination, each such Poincaré map reveals whether the particle dynamics on a
given path are characterized by a periodic attractor, or are quasi-periodic. When
there is a periodic attractor, the periodic solution of (2.2¢) this is easily computed by
numerical integration, beginning at the initial orientation obtained from the
intersection of Poincaré map with the line o, = o, which is obtained numerically.

This procedure has been carried out for the entire flow domain in the problem. The
result is shown in figure 5, and in detail in figure 6a—d, below. In figure 5, information
about the particle dynamics is conveyed according to the following scheme. Where
there is a patterned zone of particle orientations, this is indicated by a sequence of
directors showing the instantaneous orientation of the attractor at various points
along the associated recirculating particle path. These orientations are fixed relative
to an eulerian frame of reference. Where the behaviour is quasi-periodic, this is
indicated by a light grey shade. The solid cylinders appear as dark grey.

The dominant features one observes in figure 5 are the large quasi-periodic (grey)
zones: surrounding the inner cylinder (cell B), just within the outer cylinder (cell A),
and surrounding the elliptic stagnation points in cells C and D. The quasi-periodic
zones surrounding the elliptic stagnation points are in accord with the arguments
presented previously. In addition, one may observe two rather thin quasi-periodic
bands between patterned zones, one each within cells A and C. These thin quasi-
periodic bands serve to separate patterned zones where the attractors have different
flip numbers. We shall return to this point later.

Another point of interest in figure 5 is the loss of symmetry. The streamlines of the
flow are symmetric with respect to the transformation y——y. However, the
attractors, where they are present, deviate strongly from this symmetry. As an
example, note the differences in the inner patterned zone in cell C. Directors in the
upper half plane tend to point toward the saddle point on the boundary of cell C, but
directors in the lower half plane tend to point in a direction parallel to the path-lines.
The source of this loss of symmetry is, of course, the directional nature of the particle
paths through the flow field.

Now we turn our attention to the patterned zones in the flow. In general, one
observes smooth changes of the directors as one jumps across path-lines in the
patterned zones, in accord with the theoretical arguments presented earlier. This is
readily seen in figure 6a, a detailed picture of cell A. In particular, note that the areas
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Figure 5. Overview of the example in §2, in which particles (G = 0.9) are suspended in the steady
flow between eccentric, co-rotating cylinders (dark grey). The counter-clockwise speeds of rotation
of the cylinders are (inner) 20 and (outer) 1. The directors indicate the attractors in patterned
zones; light grey zones are characterized by quasi-periodic dynamics. The four recirculating regions
are denoted A (just within the outer cylinder), B (around the inner cylinder), and C and D, to the
right of the inner cylinder, left to right.

where particles rotate more quickly than the path lines turn are shared across path-
lines within a given patterned zone. In this way, all the path-lines in a given
patterned zone are characterized by the same number of flips.

Of particular interest in figure 6« is the thin, quasi-periodic band that separates
the two patterned zones of cell A. The outer patterned zone is characterized by +3
flips as particles circumnavigate their recirculating paths. The inner patterned zone
shows an additional flip in the upper left-hand portion of figure 6a; thus the inner
patterned zone is characterized by +4 flips. These two patterned zones with a
different number of flips are separated by a thin band of quasi-periodic particle
dynamices, as expected. This is in accord with our theoretical predictions. Locally, the
extra flip in the inner patterned zone is observed to arise smoothly. However, the
inner and outer patterned zones cannot fit together globally, and so a thin quasi-
periodic band forms to enable the transition.

Cell B, shown in an expanded view in figure 6b, has but one patterned zone and
one quasi-periodic zone. The patterned zone is characterized by 0 net flips around
each circuit.

In cell C, we again have four zones of particle behaviour. This can be seen in detail
in figure 6¢. Proceeding from the outside inward, the zones are patterned with — 1
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PSS

Figure 6. (@) Detail of the four nested zones in cell A. Proceeding from the outside inward, the zones
are quasi-periodic, patterned (+ 3 flips), quasi-periodic, and patterned (+4 flips). (b) Detail of the
two nested zones in cell B. Proceeding from the outside inward, the zones are patterned (0 flips),
and quasi-periodic. The dark circle is the inner cylinder. (c) Detail of the four nested zones in cell
C. Proceeding from the outside inward, the zones are patterned (—1 flips), quasi-periodic,
patterned (—2 flips), and quasi-periodic. (d) Detail of the two nested zones in cell D. Proceeding
from the outside inward, the zones are patterned (+3 flips), and quasi-periodic.

flip, then there is a thin quasi-periodic band, then a patterned zone of —2 flips, and
finally a quasi-periodic zone that contains the elliptic stagnation point as an interior
point. The additional (positive) rotation in the attractors in the outer patterned zone
in cell C occurs near the lower extremity of cell C. Again, we observe a thin band of
quasi-periodic particle dynamics separating two patterned zones of distinct flip
number. Finally, cell D in figure 6d shows a very large inner zone of quasi-periodic
behaviour. This area is surrounded by a patterned zone of +3 flips.

In figure 7, we explore the structure of the quasi-periodic band in cell C in detail,

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 7. Poincaré maps computed at different level sets of the stream function proceeding within
cell C through the three outer zones: patterned (—1 flips) (a@)—(d), the thin quasi-periodic band
(e)—(h), patterned (—2 flips) (i)—(1). The particle paths of (#)—(!) are anchored at y = 0 and x = 1.106,
1.108, 1.109, 1.1094, 1.1096, 1.1098, 1.11, 1.111, 1.112, 1.114, 1.116, 1.118, respectively.

by an examination of the Poincaré maps associated with successively nested particle
paths that span the thin quasi-periodic band. Specifically, figure 7 includes 12
Poincaré maps, computed for nested pathlines that lie in the outer, patterned zone
(—1 flips) through the quasi-periodic band and into the inner patterned zone (—2
flips). One can see that the Poincaré map changes rapidly, albeit continuously, from
nested path-line to path-line, i.e. from figure to figure. In figure 7a—d, one clearly
observes a single stable fixed point of the Poincaré map corresponding to the
attractor for orientation dynamics for particles in the outer patterned zone. On a
path-line between those associated with figure 7d, e the fixed point of the Poincaré
map is annihilated in a saddle-node bifurcation. This occurs on a critical level set of .
In figure 7e—h, there is no fixed point of the Poincaré map; hence the behaviour is
quasi-periodic. Physically, this corresponds to a non-patterned zone in the eulerian
frame of reference; the non-patterned zone is indicated by the thin grey band in
figure 6¢. Finally, the attractor re-emerges after another saddle-node bifurcation of
the Poincaré map, which occurs on a path-line between those associated with the
Poincaré maps of figure 74, ¢ (another critical level set of ). The fixed point is again
visible in figure 74—/, where the associated path-lines lies in the inner patterned zone
of cell C.

It is interesting to observe that the attractor in the outer patterned zone of cell C
seems to have developed one additional (positive) flip relative to the attractor in the
inner patterned zone, in order that there may be a smooth transition between the
attractor in the outer path-lines of cell C and those of cell D. Note that the extra
positive flip of particles on the outer right side of cell C (figure 6¢) matches the
positive flip of particles on the outer left side of cell D (figure 6d).

In view of the dependence of the particle dynamics on the shape factor G, one
would expect the patterns we have described to change if G were different from 0.9.
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As we have indicated, G' controls the anisotropic contribution to the particle
orientation dynamics. Hence ¢ near 1 is associated with a greater likelihood of an
attractor. If G were increased from 0.9, one would expect that patterned zones would
develop over a greater portion of the flow field.

In summary, in this example flow of a suspension, the principal features of pattern
formation that we have described in detail were observed in a numerical example
flow. These features include: (i) smoothly varying patterned zones where there was
a periodic attractor for the orientation dynamics, (ii) a like number of end-over-end
flips of all attractors in the same patterned zone, (iii) zones of quasi-periodic
dynamics surrounding elliptic stagnation points, and (iv) thin bands of quasi-
periodic dynamics separating patterned zones with distinct flip numbers.

3. Pattern formation in steady, recirculating, three-dimensional flows

In this section, we change the focus of our study to three-dimensional flows of
suspensions. First, we consider particle paths in recirculating three-dimensional
flows. Next, we review the orientation dynamics of particles suspended in three-
dimensional flows. This leads to an analysis of pattern formation in the
neighbourhood of elliptic stagnation points. Next, the structure of the various types
of patterned zones is then explored in detail. Finally, we consider an example of a
fully three-dimensional flow in which these phenomena may be observed.

Pattern formation in three-dimensional recirculating flows is considerably more
complex than in two-dimensional flows for three principal reasons. The first reason
is that the geometry of particle paths is more complex in three dimensions; they lie
not simply on levels sets of the stream function, but rather on level sets of two
globally defined functions of the three spatial coordinates. In addition, the concept
of nested particle paths does not apply in three-dimensional flows.

The second principal reason for the differences of three-dimensional versus two-
dimensional flows of suspensions has to do with the attractors for the orientation
dynamics. In three-dimensional flows, a quasi-periodic attractor for the orientation
dynamics superposed on the associated periodic particle- path leads to a rich
patterned structure that is fundamentally different from the patterned structure
associated with periodic attractors. Whereas the eulerian picture of a periodic
attractor for the orientation dynamics is characterized by an attracting single,
steady orientation along the particle path, the eulerian picture of a quasi-periodic
attractor is characterized by an attracting plane of particle orientations at each point
along the path. In two-dimensional flows, recall, there was no fixed pattern
associated with quasi-periodic dynamics.

Finally, the third principal difference between two and three dimensional flows of
suspensions concerns the variation of attractors for the orientation dynamics across
particle paths. In two dimensional flows, we deduced that attractors for the
orientation dynamics may belong to different homotopy classes, which has the
physical interpretation of differing numbers of end-over-end flips per circuit around
the recirculating path. In three-dimensional flows, the topological nature of the
phase space for the orientation dynamics problem changes, with the effect that a
bridge between the different homotopy classes is formed. Hence, in three-dimensional
flows of suspensions, there is no phenomenon analogous to the thin quasi-periodic
bands that must separate patterned zones with different flip numbers. Instead, there
are simply two states of the flowing suspension that may co-exist side by side after
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the decay of initial transients: these are characterized by a steady field of
predominant orientations or by a steady field of predominant planes of orientations
of the suspended particles. We consider these new complications in turn, and then
move on to consider an example flow with three-dimensional recirculating particle
paths.

(a) Topological considerations and hamiltonian structure of particle paths

In a two-dimensional steady flow, path-lines correspond to level sets of the stream
function, a constant of the motion that may be profitably regarded as the
hamiltonian function of the dynamical system for the particle paths. In the present
discussion, our interests are in three-dimensional steady flow fields with recirculating
path-lines. In the language of dynamical systems, a velocity field possesses
recirculating particle paths if the following system of equations is integrable :

da(t)/di = u(x(t), y (1), 2(t)),
dy(t)/dt = v(x(t), y(1), 2(t)),
dz(t)/dt = w((t), y (1), z(t)),

where the steady velocity vector field u = (u, v, w) is known. Following Holm &
Kimura (1991), we define integrable in this context to mean that the orbits of (3.1)
can be reduced to a parametrized set of non-self-intersecting curves on a two-
dimensional manifold. Hence, integrable systems of the form (3.1) possess only
periodic and homoclinic or heteroclinic orbits; that is to say all particle paths will be
either periodic (recirculating), or they will connect stagnation points. Stated
differently, particle paths are level sets of a function on a two-dimensional manifold;
they are either recirculating or lie on a curve that contains a fixed point. We remark
that in the special case of two-dimensional flow, the two-dimensional manifold of the
previous statement is just the plane of the low and the function on whose level sets
the particle paths lie is simply the stream function.

In a truly three-dimensional, steady flow field, the two-dimensional manifold in
question may be expressed as the level set of a global function of x = (z, y, z). Hence,
particle paths coincide with the intersections of the level sets of two functions, which
we shall refer to as C and D, both defined globally in the case of recirculating particle
paths. One can think of C(x, y, z) = ¢ as defining the two-dimensional manifold, and
D(x,y,2) = d as providing the level sets that correspond to orbits on the two-
dimensional manifold. Of course, the interpretations of C and D just given may be
interchanged. These geometric assertions are equivalent to the mathematical
statement

(3.1)

dx(t)/dt = u(x(t)) = VC x VD. (3.2)

These assertions concerning the geometry of particle paths in three-dimensional
flows are well known, where the functions €' and D are generally only locally defined.
The contribution of Holm & Kimura was to point out that if C and D are globally
defined, the geometric statement (3.2) corresponds to an integrable set of ordinary
differential equations.

Holm & Kimura pursue the hamiltonian structure of (3.2) by developing a non-
canonical Poisson bracket associated with the dynamical system (3.1). The bracket
is defined by

{F,G} =VD-VF x VG, (3.3a)
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where F' and G are scalar functions of x. Using this bracket, one may rewrite the
system (3.2) in the hamiltonian form

dx/dt = {x, C}. (3.30)

Note that the roles of C and D may again be interchanged.

In a two-dimensional, steady flow, the stream function is a constant of the motion.
In the analogous case in three dimensions, the functions C(x) and D(x) are both
constants of the motion. This may be checked by the simple calculation:

dC(x)/dt = VO-dx(t)/dt = VC-VOX VD = 0,

and likewise for D. Moreover, one can make a stronger statement: the two constants
of the motion C(x) and D(x) are Casimir functions that correspond to degeneracies of
the Poisson bracket (3.3a) (or (3.3a) with C replacing D). By definition a function
K(x) is a Casimir function of the Poisson bracket (3.3a) if

(K,G3=0 YG(x).

The functions C' and D certainly satisfy this property (for the appropriate bracket).
For background and examples of non-canonical Poisson brackets and examples of
how to find Casimir functions, we refer the interested reader to Holm et al. (1985), to
Abarbanel ef al. (1986) and to Szeri & Holmes (1988).

Now we shall extend these results concerning the geometry of the particle paths
in the flow by considering a stagnation point of the flow and the nearby flow field.
The motive for these investigations is that we shall be interested shortly in the
orientation dynamics of particles that follow recirculating paths in the neigh-
bourhood of (elliptic) stagnation points. We shall attempt to derive a result for three-
dimensional flows analogous to that derived in §2b.

At a stagnation point x*, we have from equation (3.2) the simple result

dx*/dt = u(x*) =0=VCxVD. (3.4)

Geometrically, this result has the following interpretation: at a stagnation point the
gradients of the two-dimensional manifolds defined by the level sets of the Casimir
functions C and D are co-linear. At a stagnation point of the flow, the surfaces
C(x) = ¢ and D(x) = d intersect at a point x* for the appropriate values c¢* and d*.
Equation (3.4) further specifies that the level sets of the Casimir functions C and D are
locally parallel near x*. The picture near x* looks like that sketched in figure 8.

We remark that the particle paths near the fixed point x* appear on the sketch in
figure 8 as the intersections of the level sets of D with the level set of €. We have
indicated in figure 8 that these particle paths are (generalized) elliptical curves on the
manifold C' = ¢*, as we are presently interested in elliptic stagnation points.

It is not difficult to imagine from the sketch in figure 8, that if the conditions on
the Casimir functions and on the surfaces they serve to define (3.4) are valid at the
given point x*, then similar statements can be made for some point nearby. In other
words, a typical stagnation point in an integrable three-dimensional flow is not
isolated. Proof of this statement may be established as follows. The velocity near a
stagnation point may be written

u(x*+0x) = Vu(x*)-dx+ O(||0x||?). (3.5)

This quantity is zero at a point nearby to x* provided the velocity gradient at x* has
a non-empty null-space. This is checked by computing

det [Vu(x*)] = 0. (3.6)
Phil. Trans. R. Soc. Lond. A (1993)
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Figure 8. Sketch of the underlying geometrical features of the dynamical system for recirculating
particle paths in a three-dimensional flow, in the neighbourhood of an elliptic stagnation point. The
surfaces are the level sets of the Casimir functions C and D. The heavy curves are portions of
recirculating particle paths in the neighbourhood of the elliptic stagnation point that lie on the
2-manifold €' = c*.

In this calculation, which is rather involved, we have made use of the fact that the
gradients of the level sets of the Casimir functions are co-linear at the stagnation
point x*, i.e. we make use of (3.4). Hence, the stagnation point x* is not isolated, but
is instead a point on a continuous curve of stagnation points. These arguments are
essentially an application of the implicit function theorem; we refer the interested
reader to Golubitsky & Schaeffer (1985, Appendix 1) for similar examples.

We have established that three-dimensional flows with recirculating particle
paths, free stagnation points x* are normally points on a stagnation curve that one
may write x*(s). This curve cannot simply end in the fluid. It must end either at a
boundary of the fluid, or at a bifurcation point where it branches into two or more
stagnation curves. Another possibility is that the stagnation curve is self-intersecting
(i.e. closed). We remark that there may be other types of stagnation points, at which
there is some degeneracy such as the vanishing of the gradient of a Casimir function.
Such points are not covered by the preceding analysis.

(b) A brief discussion of particle orientation dynamics in three-dimensional flows

In this section, we give a very brief overview of the arguments of Szeri & Leal
(1993) concerning orientation dynamics of particles in three-dimensional flows. In
three-dimensional flows, there is no plane in orientation space that is analogous to
the plane of the flow when the flow field is two-dimensional. For this reason, it is not
possible in three-dimensional flows to decouple the orientation dynamies in the two
angular variables one might use to describe the sphere of orientations. Hence for a
particle that follows a recirculating path in a three-dimensional flow, the phase space
of the differential equation describing the orientation dynamiecs is not reducible to a
torus. We leave the ramifications of this latter statement for §3d, and focus the
present discussion on the various types of orientation dynamics that occur in
recirculating flow. However, as the dynamics in the two angular variables for the
sphere of orientations do not decouple, we shall work in vector notation rather than
in orientation angles of the particles.

For the microdynamical equations (1.2), the main results are as follows. The
solution of the orientation evolution equation may be obtained conveniently via the
equivalent deformation gradient tensor approach; see Bretherton (1962) and also

Phal. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

, \

AN

/an \

A
y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Pattern formation in suspensions 495

Table 1. Orientation dynamics in locally steady, three-dimensional flows

eigenvalues of x orientation dynamics attractor

AL> A, > A, steady, |le, (eigenvector assoc. with A,)
A, > O real, A, and A, complex conjugate steady, |e,
Ay <O real, A, and A, complex conjugate limit cycle in a plane

Lipscomb et al. (1988). We define the equivalent deformation gradient tensor Q to be
the solution of the linear matrix differential equation

dQ/dt =k(t)-Q, Q(0)=1Id. (3.7)
Then the solution of the orientation dynamics problem may be written in terms
of Q:

R(t; Ry) = Q(t) Ry /[ Q(t) " Ryl (3.8)

This procedure is valid whether x in the lagrangian frame of the moving particle
depends on time or not. Of course, the solution of the nine coupled equations (3.7)
may be extremely difficult when these are equations with time-dependent coefficients.
Physically, the equivalent deformation gradient tensor Q(f) corresponds to the true
deformation gradient tensor between reference (f = 0) and current (¢) configurations
in physical space, but only when the shape factor ¢ = 1.

In the very special case of flows that are steady in the lagrangian frame of the
moving particle, there are various strong relationships between Q and «k, that derive
from (3.7). For this reason, the orientation dynamics of individual particles may be
determined in terms of the equivalent velocity gradient tensor x = 2+ GE. The
asymptotic orientation dynamics in the very simple case of (locally) steady flows are
completely determined by the eigenvalues and eigenvectors of k; the results for
generic (i.e. typical) cases are shown in table 1.

Thus, when there is a positive real eigenvalue of x, particles simply align with the
associated eigenvector. When there is no real, positive eigenvalue of x, particles are
attracted into the plane of the flow where they rotate ad infinitum. Hence, the
qualitative nature of the dynamics again depends on the shape factor G.

Our particular interest in the present work concerns particles suspended in flows
that are 7-periodic in the lagrangian frame associated with the particle. In this case,
the right-hand side of equation (1.2) is periodic (non-autonomous) in orientation
space. Equation (1.2) may be made autonomous in the standard way, ie. by
appending an additional equation to the system (1.2) of the form dt/df =1 and
regarding x in (1.2) or (3.7) as a function of 7. The coordinate 7 manufactured in this
way is regarded as periodic in time. In this way, equation (1.2) may be made
autonomous in the phase space formed from the cartesian product of the sphere of
orientations and a circle of periodic times 7. Rather than study the continuous-time
dynamics in this space, we shall work with the Poincaré map of the sphere of
orientations to itself.

The Poincaré map 2 is defined by Z(R,) = R(t = T'; R,). The map has the usual
interpretation; one application of the Poincaré map to an initial orientation is
equivalent to integration of the differential equation forward for one period,
beginning at the initial orientation. The map &£ is related to the equivalent
deformation gradient tensor Q, evaluated at the period of the flow 7', by the equation

2(R,) = R(T; Ry) = Q(T) R,/ Q(T)" R,||. (3.9)
Phil. Trans. R. Soc. Lond. A (1993)
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Table 2. Orientation dynamics in locally periodic, three-dimensional flows

eigenvalues of Q orientation dynamics attractor
£, >6>8 limit cycle
£, > L real, &, and &, complex conjugate limit cycle
£ < 1real, & and &; complex conjugate quasi-periodic attractor

(in plane with T-periodic normal)

From (3.9), it is apparent that fixed points of the Poincaré map R, correspond to
time-periodic solutions of the underlying differential equation; thus R(t+7"; R;) =
R(t; R;). Moreover, fixed points R, can be shown to be eigenvectors of the
equivalent deformation gradient tensor Q, evaluated at the period of the flow 7', with
corresponding eigenvalue [|Q(T) R|.

Hence, in flows that are time-periodic in the lagrangian frame of the moving
particle, the orientation dynamics are completely determined by the eigenvalues and
eigenvectors of the equivalent deformation gradient tensor Q(7'), which is the
solution of equation (3.7). The results for generic cases are summarized in table 2.

When the equivalent deformation gradient tensor Q(7) has a real eigenvalue
greater than one, the corresponding attractor for the orientation dynamics is
periodic. The eigenvector associated with the real eigenvalue greater than one is the
instantaneous orientation of the attractor at t = 0, 7', 27, .... The integral curve of
the attractor over the period may be reconstructed by use of equation (3.8) and the
time-dependent equivalent deformation gradient tensor.

When the equivalent deformation gradient tensor Q(7') has no real eigenvalue
greater than one, then one can show that the Poincaré map (3.9) possesses an
attracting invariant plane. In other words, particles are mapped closer and closer
into the invariant plane over each period 7. Once they lie in the invariant plane,
particles simply rotate around within the invariant plane. The combination of
periodic rotation in the invariant plane, and periodic motion around the recirculating
particle path is equivalent to quasi-periodic orientation dynamics in the lagrangian
frame. If the origin of time were shifted, with a corresponding shift in the initial
condition of equation (3.7) and in the Poincaré map (3.9), one would find a different
attracting invariant plane of the Poincaré map. Thus the quasi-periodic attractor in
the lagrangian frame corresponds to an attracting invariant plane with a 7-periodic
normal in the eulerian frame, as shown in the sketch in figure 9.

At a fixed location, within the invariant plane, particles simply rotate at a varying
speed. This leads to a new type of fixed pattern when the (orientation dynamics)
attractor is quasi-periodic: at each fixed location along the associated particle path,
all particles lie in a plane with normal that changes smoothly along the particle path.

Thus, in three-dimensional, steady recirculating flows of suspensions, there are two
types of fixed patterns. At a fixed location in space all the particles may be aligned
with a steady orientation, or they may all be rotating but co-planar. These situations
correspond to periodic and quasi-periodic attractors in the lagrangian sense,
respectively. Moreover, there are no non-patterned regions of the flow when it is
three-dimensional. The type of attractor associated with the orientation dynamics
depends on the shape factor .

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 9. Sketch of the attracting invariant planes in the eulerian reference frame for the
orientation dynamics of particles following a recirculating path through physical space. The
asymptotic orientation dynamics of individual particles is characterized by a quasi-periodic
attractor in the lagrangian frame.

(¢) Conditions that apply near an elliptic stagnation curve

We analyse the particle paths and orientation dynamics in the neighbourhood of
an elliptic stagnation point on a stagnation curve in a three-dimensional flow, as we
did in two dimensions in §2b. We chose local cartesian coordinates so that the null
space of the velocity gradient tensor is span {(1, 0, 0)}. Thus, the stagnation curve
continues, locally, in the + (1, 0, 0) directions. Hence, the local gradients of the level
sets of the Casimir functions are in the directions + (1, 0, 0).

By use of Schur’s theorem, one can write the velocity gradient tensor evaluated at
an elliptic stagnation point in the form

0 o fp
Vu(x*)={0 0 A (3.10)
0 —A 0

where o, # and A > 0 are real. The particle paths near x* are solutions of
ddx/dt = Vu(x*)-dx,
which may easily be computed in coordinates:
S (8) 82, (0) + A1 [or 8, (0) + ,(0)] sin Ab + A7 [ da5(0) — B82,(0)] (1 — cos At)
Sy (t) |= 02,(0) cos At + dx,(0) sin At
Sy () d,(0) cos At — 8, (0) sin At
(3.11)

Note that these particle paths are periodic with period 7}, = 21/A.
Phil. Trans. R. Soc. Lond. A (1993)
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The orientation dynamics, on the other hand, evolve according to the equivalent
velocity gradient tensor
K(x*+0x(t)) = k(x*)+..., (3.12)

which is computed in the same coordinates to leading order

0 @+ a HA+1)p
K(x*) =[ (G—1a 0 A (3.13a)
(G—-1)p —A 0
To leading order then, k is steady, with eigenvalues
0, £3{(G*—1) (@ + ) —4LF, (3.13b)

i.e. 0 and a complex-conjugate pair (for G < 1). This corresponds to the following
dynamics: all orientations are periodic and the orientation (1, 0, 0) is an elliptic
(degenerate) equilibrium orientation. In other words, there is no attractor. Note that
this case is not present in table 1 which pertains to particles in flows that are steady
in the lagrangian frame; the reason is that this case in which there is a zero
eigenvalue is not generic. In particular, Szeri & Leal (1993) have shown that this
situation is degenerate. If one were to include the next term in the approximation

K(x*4+0x(t)) = Kk(x*)+ Vr(x*) 3x(1)..., (3.14)

the orientation dynamics would be qualitatively different; either there would be a
periodic attractor, or there would be a quasi-periodic attractor in general. A periodic
attractor would be of period 7} ..t = 27/A, the same period as that of the particle
paths. Thus, there would be a steady pattern of attracting orientations of particles
near the stagnation point, after the decay of initial transients. A quasi-periodic
attractor would have an associated invariant plane with a normal that is periodic
with period T}, = 27/ A, the same period as that of the particle paths. Thus, there
would be a steady pattern of attracting planes near the stagnation point, after the
decay of initial transients.

However, in order to discern which possibility will be the case, one must solve the
second-order problem for the orientation dynamics. This does not seem to be
practical. In summary, our study of the orientation dynamics of particles near an
elliptic stagnation point is inconclusive. In this connection, it is worth noting that in
the example problem of §3¢, we observe a zone of quasi-periodic particle orientation
dynamics in the neighbourhood of every elliptic stagnation point.

(d) Structure of patterned zones

There is an important difference between the structure of patterned zones in two-
dimensional and three-dimensional flows of suspensions. This difference, to which we
have already alluded, pertains to the phase space of the differential equation for
orientation dynamics of particles that follow recirculating path-lines. In two
dimensions, the phase space is reducible to a torus, i.e. to the product of a circle (for
orientation angle in the plane) and a circle (for periodic time). As we saw in §2, there
may be interesting, observable effects that derive from the different homotopy
classes to which different periodic attractors may belong. In particular, we saw that
bands of quasi-periodic orientation dynamics must separate two patterned zones in
the same recirculating cell that are characterized by a different number of flips per
circuit.

Phil. Trans. R. Soc. Lond. A (1993)
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(@) ®)
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S |
t=0
t=T

t=T

Figure 10. (a) Sketch to accompany the discussion of homotopy classes of periodic attractors for the
orientation dynamics. In two-dimensional recirculating flows, the reduced phase space for
orientation dynamics is a torus, here represented as an annulus with the circles t =0 and t = T
identified. The two periodic attractors labelled @ and b belong to different homotopy classes,
corresponding physically to a different number of end-over-end flips of the particle per
circumnavigation of the particle path. (b) Same as (@), but for three-dimensional flows, in which the
phase space for orientation dynamics is not reducible from the cartesian product of a sphere and
a circle. The periodic attractors labelled a and b belong to the same homotopy class in this case; a
can be smoothly deformed into b.

As a prelude to our considerations of three-dimensional flows, let us investigate the
phase space for two-dimensional flows in somewhat greater detail. To begin, consider
the sketch in figure 10a.

In figure 10a, we have a representation of the (o, ¢) torus as an annulus, with edges
t=0 and t="T identified. There is one such annulus associated with each
recirculating particle path in the flow. The reason for working with this geometric
representation of the phase space is to simplify conceptually the extension to the
appropriate phase space for three-dimensional recirculating flows. We emphasize,
however, that our analysis applies to two-dimensional flows in which suspended
particles are free to rotate out of the plane of the flow. It is only as a consequence
of the decoupling of orientation dynamics in two orientation angles that we may
consider the reduced phase space as described. A periodic attractor must have
o(T; o,) = 0y, by definition; hence the initial and final conditions must lie on a
o = constant ray (o = o) in this representation. In figure 10a we show two possible
periodic attractors associated with a recirculating particle path. The two possible
periodic attractors a and b in figure 10a, with n(a) =0 and n(b) =1 belong to
different homotopy classes. One cannot smoothly deform « into b and maintain the
restriction o(T'; o,) = 0,. Different homotopy classes of attractors are associated,
physically, with different numbers of end-over-end flips of the particles as they
circumnavigate their particle paths in physical space. It is this curious topological
restriction that leads to the thin quasi-periodic bands separating patterned zones
characterized by different numbers of end-over-end flips.

Now, in three dimensional flows, the phase space for the orientation dynamics
problem along recirculating particle paths cannot be reduced from the cartesian
product of a sphere (of orientations) and a circle (of periodic time), as the velocity
gradient tensor is fully three-dimensional. The ramifications for pattern formation
are as follows. In figure 105, we show a sketch of phase space represented as the space
between two concentric spheres labelled ¢ = 0 and ¢ = 7', which are identified. Thus,
a periodic attractor emanates from a point on the sphere ¢ = 0 and proceeds to the
point on the same ray on the sphere ¢ = 7. Clearly, the two possible periodic

Phil. Trans. R. Soc. Lond. A (1993)
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attractors labelled @ and b in figure 105 are in the same homotopy class, as one can
deform @ smoothly into b, and yet maintain the topological restriction regarding
periodicity.

Hence, in three-dimensional recirculating flows of suspensions, we do not have
phenomena analogous to flip numbers or to thin quasi-periodic bands separating
patterned zones with different flip numbers. Instead, in three-dimensional recir-
culating flows of suspensions, the are two states of the flowing suspension: one state
has the particles everywhere locally aligned along a single preferred orientation, and
the other state consists of particles locally rotating in preferred planes of orientations.

(e) Example: flow within a flurd drop in a linear external flow field

Now we move on to an example of a three-dimensional recirculating flow to see
how the structures we have identified may arise. We consider the Stokes flow within
a neutrally buoyant, spherical drop driven by an external flow of the surrounding
fluid. This flow has been examined recently by Stone et al. (1991) in the context of
chaotic particle paths, which may or may not exist depending on the external flow;
see also the recent work of Bajer & Moffatt (1990). We are interested in the sub-class
of these flows in which the particle paths are recirculating (and hence, not chaotic).

The external flow that drives the internal flow is steady and linear. As such, this
flow is characterized by a steady rate-of-strain tensor E and vorticity vector @. The
velocity field within the drop that arises in response to the external flow is developed
in Stone et al. (1991):

u(x)=—2—(—1—1_1_——/—\—)[(572—3)E-x—2(x-E-x)x]—l—%w><x. (3.15)

In this expression, lengths have been non-dimensionalized with respect to the drop
radius a; the velocity has been non-dimensionalized with respect to ¥a where % is a
typical shear rate of the external flow. A is the viscosity ratio of the inner fluid over
the outer fluid, and 72 = x-x. We consider here the subset of external flows without
vorticity, i.e. @ = 0. Time may be re-scaled so that the particle path equations may

be written
dx(t)/dt = u(x(t)) = (br*—3) E-x—2(x - E- x) x. (3.16)

As a particular example flow, we focus on the case where the rate-of-strain tensor

in its eigenbasis has the form
10 0
E=|0 2 0| (3.17)

0 0 -3

Then, after a rather involved calculation beginning from the geometric form of the
particle path equations (3.2), one can find the Casimir functions €' and D:

C(x) = a%/y*z, D(x)= (y*2/a*) (1 —a®—y?—22). (3.18a)

Equation (3.2) may be verified. We remark that the Casimirs €' and D were actually
found by working in standard spherical polar coordinates (p, 6, ¢) and searching for
separable forms for ¢! and D that yield equation (3.2). In standard spherical polar
coordinates, C' and D have the form:

O(p, 0, ¢) = tan 6 cot* ¢ cos ¢, }
D(p,0,¢) = r*(1 —r?)sin 0 cos® 0 tan* ¢ sin .
Phil. Trans. R. Soc. Lond. A (1993)
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Figure 11. Intersection of the level sets of the Casimir functions €' and D with ¢ = 0.01 and d = 1,
in the domain y > 0. The surface associated with C is the warped sheet, and the surface associated
with D is the closed bean-shaped surface. The recirculating particle paths in this flow follow the
intersections of the level sets of C' and D.

Figure 12. The two closed curves of elliptic stagnation points given parametrically by equation
(8.19), for a spherical drop suspended in the steady, linear, external flow (3.17). There is another ring
of stagnation points that lies in the z—y plane on the circle with unit radius (the equator), and a
pair of degenerate stagnation points at the poles.

In figure 11 we show the intersection of the level sets of the two Casimir functions
C and D; the intersection shown thus corresponds to a recirculating particle path.

There are two fully three-dimensional, closed curves of elliptic stagnation points,
given parametrically over 0 < ¢ < 2w by

* * * 1 ((3v2)cos¢ (3v/2)sing +(v/3)(2—cos? )i
P v, ) <(9"0082¢)%’ (9—cos2¢)  (5—cos®@): )

=75

. (3.19)
These curves are shown in figure 12.

Now that we have cast light on the particle paths in the flow field within the
spherical drop, we move on to consider the asymptotic orientation dynamics. Owing

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 13. (a) Pattern boundary between the two zones of the flowing suspension that coexist in the
example flow of §3. The two zones are those associated with periodic and with quasi-periodic
particle orientation dynamics in the lagrangian frame. The closed curves lie on the pattern
boundary ; they correspond to particle paths at the sharp transition between periodic orientation
dynamics outside the (imaginary) surface, and quasi-periodic orientation dynamics within the
surface. The other curve passing through the closed particle paths corresponds to the curve of
elliptic stagnation points. (b) Same as (a), but from a different point of view.

to symmetries of the external flow field, it is sufficient to consider one quarter of the
spherical drop; we choose to concentrate on the domain

D ={(x,y,2): 2 +y*+2° < 1,9y = 0,2 = 0}.

In order to investigate the asymptotic particle dynamics, we proceed as follows.
First, we choose an initial point in the flow field and integrate the particle path over
one period back to the initial point. Next, we integrate the evolution equation for the
equivalent deformation gradient tensor Q, equation (3.7), over one period of the flow.
This allows us to assemble the Poincaré map (3.9). The eigenvalues of Q provide the
information on the nature of the attractor for the orientation dynamics, as presented
in table 2. The attractor is either periodic or it is quasi-periodic. If the attractor is
periodic, then the eigenvector associated with the maximum (real) eigenvalue
provides an initial condition for the periodic attractor. This orientation can be
‘integrated’ around the particle path by use of the time-dependent tensor Q and
equation (3.8).

If, instead, the attractor is quasi-periodic, then we must find the invariant planes
at each fixed location along the closed particle path. This is done as follows. For each
fixed location of interest along the particle path, we integrate equation (3.7)
beginning at ¢ = 0 over one period of the flow. The resulting tensor Q will yield a
plane in orientation space that is invariant under the transformation (3.9). The
normal to this plane n is easily computed from the equations

nu=0, nQT)u=0, |u=1.

These procedures have been carried out for the flow field interior to the drop (3.15),
with zero vorticity and rate-of-strain tensor (3.17), and for particles with shape
factor G = 0.9. The results we have obtained fall into the following broad description.
On those particle paths that begin sufficiently close to the elliptic stagnation curve,
the particle dynamics are quasi-periodic. This result recalls the two-dimensional
example of §2, where we found quasi-periodic dynamics occurring in the regions

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 14. (a) Particle paths and associated attractors in the periodic zone outside the pattern
boundary shown in figure 13. The initial points of the particle paths were taken on the plane y =
0, on a ray from the origin to the elliptic point in the plane, with the innermost recirculating paths
lying just outside the pattern boundary. (b) Particle paths and associated attractors in the periodic
zone outside the pattern boundary shown in figure 13. The initial points of the particle paths were
taken on the plane y = +1x, on a ray from the origin to the elliptic point in the plane, with the
innermost recirculating paths lying just outside the pattern boundary. (c¢) Particle paths and
associated attractors in the periodic zone outside the pattern boundary shown in figure 13. The
initial points of the particle paths were taken on the plane y = + 2z, on a ray from the origin to the
elliptic point in the plane, with the innermost recirculating paths lying just outside the pattern
boundary. (d) Particle paths and associated attractors in the periodic zone outside the pattern
boundary shown in figure 13. The initial points of the particle paths were taken on the plane
x =0, on a ray from the origin to the elliptic point in the plane, with the innermost recirculating
paths lying just outside the pattern boundary.

surrounding the elliptic stagnation points. (However, recall that our analytical
efforts at proving that this must be the case in three-dimensional flows were
inconclusive.) On those particle paths that lie further from the elliptic stagnation
curve, the particle dynamics are periodic. In figure 13, we show bounding particle
paths on the (imaginary) surface that separates these two distinct patterned zones.

The imaginary surface shown in figure 13 is the pattern boundary between the two
different zones that coexist in this example flow: those associated with periodic and
with quasi-periodic particle dynamics.

Outside the pattern boundary shown in figure 13, the particle dynamics are
periodie, corresponding to a fixed pattern of attracting orientations in the Eulerian
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Figure 15. Particle paths and associated attracting planes in the quasi-periodic zone just inside
the pattern boundary shown in figure 13.

reference frame. In figure 14, we show plots of the fixed pattern associated with the
periodic particle dynamics along various sheets of recirculating particle paths outside
the pattern boundary. The first sheet of recirculating particle paths (figure 14a)
happens to lie in the z—z plane of the flow, which is a plane of symmetry of the flow
field ; the last sheet of recirculating particle paths (figure 14d) lies in the y—= plane of
the flow, which is another plane of symmetry of the flow field.

The particles that follow the outermost recirculating paths in each of the figures
are, for the most part, quite closely aligned with the tangent to the particle path,
with the exception of the region of the flow near the equator of the spherical drop.
There, the pattern of particle orientations is nearly normal to the particle path. The
particles are less aligned with the tangent to the particle path as one moves inward
in the set(s) of recirculating paths shown in each diagram. The innermost
recirculating path shown in each of figure 14a-d is a path just outside the pattern
boundary where the transition to quasi-periodic particle dynamics takes place. It is
interesting to note that on this limiting particle path, the particles are arranged in
a way that is almost perpendicular to the tangent to the particle path everywhere.

The quasi-periodic zone occurs in the present example within the pattern
boundary indicated in figure 13. In figure 15, we show the fixed inclinations of the
attracting invariant planes of particle orientations at various stages along the
particle paths that lie just inside the pattern boundary shown in figure 13.

One observes that the pattern of attracting planes varies smoothly throughout the
part of the flow that is characterized by quasi-periodic dynamics. In the places where
the pattern boundary cuts the x—= or y—= plane, and the particle path lies is a plane
owing to symmetry, the invariant planes of the particle orientation dynamics lie also
in the same planes.

In summary, this three-dimensional example flow of a suspension of orientable
particles has shown the principal features of pattern formation that we have
described. These features included: (i) a strongly ordered state characterized by
attracting orientations of particles that are fixed in the eulerian frame; (ii) a weakly
ordered state characterized by attracting planes of orientations of particles that are
fixed in the eulerian frame; (iii) smooth spatial variation in the two types of patterns;
and (iv) a sharp boundary between different types of patterns.

Phil. Trans. R. Soc. Lond. A (1993)
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4. Conclusions

We have investigated in detail the steady, recirculating flows of suspensions of
orientable particles in two and in three dimensions. After the decay of initial
transients, the orientations of individual suspended particles in these flows are
governed by the global attractors for the orientation dynamics. The patterns that
arise are associated with the smoothly varying attractors for the orientation
dynamics. Hence, the organized behaviour develops in response to the flow itself. The
flow creates the order, maintains the order, and gives the material its characteristic
disposition of suspended particles. If the flow were to cease, brownian motions would
eventually erase the organized behaviour.

The behaviour of each particle is determined only by the history of the local flow
fields it has experienced. We have shown that regularity of solutions to ordinary
differential equations allows one to synthesize a coherent picture of which
orientations are favoured over regions of the flow, by a consideration of the variation
of attractors for the orientation dynamics across particle paths in the flow.

In two-dimensional flows, the important features one may observe include: (i)
zones of quasi-periodic particle dynamics surrounding elliptic stagnation points in
the flow (a disordered state); (ii) zones of steady patterns of fixed attracting
orientations that vary smoothly across particle paths (an ordered state); (iii) a like
number of end-over-end flips of particles in the same patterned zone; and (iv) thin,
quasi-periodic bands separating patterned zones with distinct flip numbers. In three-
dimensional flows, the important features are somewhat different: (i) there are two
states of the material that may co-exist side by side, associated with periodic and
with quasi-periodic attractors in the lagrangian frame; and (ii) there are no
phenomena analogous to the shared flip number of particles in a zone or to thin quasi-
periodic bands separating zones of different flip number. Because the dynamical
behaviour of particles in a recirculating, three-dimensional flow field are structurally
stable, one can expect that small perturbations due to slight particle flexibility or
weak brownian motions or minute particle—particle interactions would not change
the qualitative nature of the patterns we have described. In addition, we note that
Gafian-Calvo & Lasheras (1991) have shown that particles may still follow a
recirculating path through a flow-field even though they do not follow the same
trajectories as fluid particles. Hence pattern formation may also be of importance for
particles with dynamical effects.

Finally, it is interesting to speculate on what may be the uses of the new
phenomena we have described. The principal use one might imagine would be in the
field of material processing. We have already pointed out that the phenomena we
have described are purely kinematical, and therefore occur in flows of suspensions
whether or not the particles affect the macroscopic flow. It is also interesting to note
that these phenomena are unaffected by a change in the viscosity provided that the
flow field is preserved, geometrically, under changes in the viscosity. This latter
condition is satisfied in a Stokes flow.

One could imagine a materials processing operation in which a composite material
is the described product. In the liquid phase, pattern formation might be used in
order to produce desired patterns of the distribution of particle orientations through
the part that survive intact as the material hardens. These ideas might be applied to the
manufacture of plastic parts, in which the flow that induces the pattern formation
would be driven by motion of the boundary or by convection effects. In this case, the
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suspended phase might be included for its strengthening or its optical properties,
depending on the application. Another interesting use for these phenomena occurs if
the suspending phase is a metal. In this case, the principles of electromagnetic
stirring might be applied to engineer any desired pattern of stirring and patterns
of orientation of the suspended phase, to produce a composite material with
desired properties. We refer the reader to the interesting paper by Moffatt (1991)
for background on electromagnetic stirring.

The author thanks Mr Vi Vuong and Dr Alan Schiano for assistance in the preparation of figure
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“igure 5. Overview of the example in §2, in which particles (¢ = 0.9) are suspended in the steady
low between eccentrie, co-rotating cylinders (dark grey). The counter-clockwise speeds of rotation
O p : . _ o - - . .

f the cylinders are (inner) 20 and (outer) 1. The directors indicate the attractors in patterned
ones; light grey zones are characterized by quasi-periodic dynamics. The four recirculating regions
are denoted A (just within the outer cylinder), B (around the inner cylinder), and CC and D, to the
1ght of the inner cylinder, left to right.
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igure 6. (@) Detail of the four nested zones in cell A. Proceeding from the outside inward, the zones
re quasi-periodic, patterned (+ 3 flips). quasi-periodic, and patterned (+ 4 flips). (b) Detail of the
wo nested zones in cell B. Proceeding from the outside inward, the zones are patterned (0 flips),
nd quasi-periodic. The dark circle is the inner cylinder. (¢) Detail of the four nested zones in cell
. Proceeding from the outside inward. the zones are patterned (—1 flips), quasi-periodic,
atterned (—2 flips), and quasi-periodic. (d) Detail of the two nested zones in cell D. Proceeding
‘'om the outside inward, the zones are patterned (+3 flips). and quasi-periodic.
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igure 11. Intersection of the level sets of the Casimir functions (' and D with ¢ = 0.01 and d = 1,
1 the domain y = 0. The surface associated with ' is the warped sheet, and the surface associated
rith D i1s the closed bean-shaped surface. The recirculating particle paths in this flow follow the
itersections of the level sets of (' and D.
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